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1. INTRODUCTION

1-1. General Aspects

Naval Electronics systems process extremely large quantities of data today and
it is expected that demands on high speed real-time signal processing will
increase substantially in the next decade. Requisite device speed and densi-
ties demand that critical feature size be reduced to submicron or
ultrasubmicron scales.

This reduction places uncommon demands on the quality of the materials used in
device fabrication. For example, in present bipolar devices, crystallographic
microdefects, precipitates, clusters, and deep level traps can result in micro-
plasma and junction leakage, current channeling, nonuniform heating, degraded
pn junction breakdown, etc. Taken in combination these introduce limits on
size and/or chip yield. In silicon MOS devices, similar defects lead to gener-
ation-recombination centers and leakage current sources. Here refresh times
in dynamic RAMs, threshold shifts in static RAMs, maximum operating tempera-
tures, etc., are degraded. The situation in gallium arsenide is even more
difficult. Defects in the substrate material are severely limiting yield,
raising costs, and causing time scales for projected commercial and military
applications to be pushed back several years. This is true for both GaAs
digital devices and the new MMIC devices.

Material variations arise during all stages of device fabrication, beginning
with crystal growth. In most methods of synthetic production of single crys-
tals, the crystal grows slowly from a fluid nutrient. Being a fluid, various
hydrodynamic mechanisms drive it's motion. The fluid motion is of concern to
crystal growers because they determine the transport of impurities, heat, etc.,
to the grown crystal, and the stresses on the crystal.

The present study involves the application of numerical techniques to the most
popular method of growing crystals: the Czochralski (Cz) process. The Cz
method is the principle method by which silicon and gallium arsenide boules
are obtained in the microelectronics industry. The study was supported by the
Office of Naval Research through the DESAT program. The motivation for the
program is clear. It is currently accepted that the properties of the melt
are the primary factors affecting the quality of silicon and gallium arsenide
substrates. The properties of the melt are themselves determined by a broad
and interacting matrix of variables that include crystal rotation, crucible
rotation, pull rate, crucible temperature, pressure, orientation, etc. These
input variables have been traditionally operator controlled, and the quality
of the boule was often dependent upon the past experience of the operator, and
resulting trial and error procedures. Because of the high demands of both the
commercial and military markets, as well as international competition, the
control of the growth variables and the manner in which a variation of one
affects another, systematic techniques are needed for optimization of crystal
growth. The very first strp in this optimization is the development of numer-
ical codes that closely replicate the growth procedures. The second is the
development of software that is coupled to the actual growth apparatus and is
capable of being self-correcting. At this point in time, both of these proce-
dures are under develop ent. But the degree to which this coupled approach is
useful is dependent upon the constraints of the equations governing the fluid
flow.
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Pragmatically, present crystal growers require a three dimensional transient
algorithm that describes crystal growth and is capable of handling such
external effects such as the presence of magnetic field, electric fields,
encapsulation, melt replenishment, etc. Such algorithms have been developed
at Scientific Research Associates, Inc. (SRA) and have been applied to silicon
and gallium arsenide.

The equations solved in the SRA study are the continuity, momentum and energy
balance equations for the melt, as well as the species concentration
equation. For the crystal, the energy balance equation is solved. The
governing equations are formulated using primitive variables and are not
thereby restricted to limitations of two dimensional symmetry. The crystal
and melt phases are coupled through thermal and dynamic conditions applied
along the melt-crystal and melt-free surface boundaries. For most of the
calculations the shape of the interface is determined through solutions to
differential equations that govern the kinematic conditions at the specific
interface, and are not assumed a priori. The numerical procedures are
obtained by a well documented procedure known as the consistently split
Linearized Block Implicit (LBI) scheme, originally developed at SRA. While
SRA's numerical studies of crystal growth are perhaps the most general, to
date, the extent to which the procedures and results are of relevance should
be placed in perspective at this early stage in the discussion.

All numerical studies of Cz growth involve simplifying assumptions and result
in placing the studies in different groups, or categories as summarized in
Table 1.1.1. The first groups involves only studies of the thermal-hydrody-
namics of the melt phase. That is, the energy and momentum balance equations
for the melt were solved. The assumptions for this group are generally: i)
planar free surface; 2) planar melt-crystal interface, and; 3) uniform
temperature distribution in the crystal phase. The second group involves the
studies of temperature distribution in the melt phase and/or the crystal
phase. The influence of hydrodynamics of the melt on the temperature is
assumed to be small; and only the energy balance equation is solved. However,
attention in this group was paid to the shape of the free surface as well as
that of the melt surface interface. The third group includes that of the
first but also includes energy balance within the crystal. The melt and
crystal phases are coupled together via thermal conditions at the melt-crystal
interface. The analysis on this group is difficult, and the shape of the free
surface and the melt surface interface is not considered.

The present work extends that of the last group, plus: i) the shape of the free
surface and includes the mensicus at the crystal-melt-argon contact point, ii)
the shape of the melt-crystal interface, iii) normalized dopant distribution
in the melt, iv) dopant distribution near the melt-crystal interface, v) the
effect of replenishment, vi) the dependence of melt properties on crucible
size, vii) the dependence of melt properties on crystal size, viii) the
dependence of melt properties on crystal penetration of the melt.

The structure of the paper is as follows: Section 1.2 presents a brief
discussion of CZ growth. This is followed by a historical summary of the
earlier studies. Section 2 describes the mathematical formulation of the CZ
growth problem. In Section 3 numerical details are discussed, including a
description of the body-fitted coordinate algorithm, transient capability and
CRAY vertorization. Section 4 contains a description of model 'numerically
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based' calculations. Application to silicon is contained in Sections 5 and 6,
with the latter devoted to three dimensional studies. Conclusions and

Recommendations of future directions is contained in Section 7.

1-2. Fundamentals of Czochralski growth

The basic principle of growing a single crystal by the Czochralski method is
shown in Figure 1.1.1. The crucible is initially filled with the material
e.g., polycrystalline Si, to be crystallized. Thermal energy is supplied by a
heater surrounding the crucible thereby raising the temperature of the solid
above its melting temperature. A seed crystal, at the end of a rod, is then
dipped into the melt and, after appropriate start-up procedures, slowly
withdraw from the melt.

Under suitable temperature conditions recrystallizaton in the form of single
crystals occurs. This method, bears Czochralski's name, who in 1916 [1],
established it as a means to determine the crystallization velocity of
metals. For the growth of silicon (Si) and germanium (Ge) single crystals,
the typical pulling rate is less than 3.5mm/min. For a 2 inch diameter
gallium arsenide crystal is about 0.15 mm/min.

To keep the feeding material molten, the crucible is maintained at a
temperature above the melting point. The resulting axial and radial
temperature gradients within the melt cause natural convection. In order to
improve uniformity, the growing crystal is rotated as it is pulled. The
rotating crystal acts as a centrifugal pump sucking-up the melt fluid axially,
while ejecting it tangentially.

As the crystal rotates, a viscous shear layer (Ekman layer) is formed under the
crystal, tending to isolate the growing solid/melt interface from the melt near
the bottom of the crucible. The radially outward flow, due to the rotating
crystal, is met by a countering radial inflow fluid driven by the hot crucible
wall.

A resultant downflow occurs at some radial distance, whose position is
determined by the relative strength of the two rotational flows and the
buoyancy-driven convection.

Rotation of the crucible, which is also sometimes utilized, is implemented to
smooth out additional thermal asymmetries that arise from irregularities in
heating. This also introduces a centrifugal flow. The combined effects of
crystal and crucible rotation, even in an iso-thermal fluid, are complex and
depend on whether the two are iso-rotating or counter-rotating.

With iso-rotation, a Taylor-Proudman cell can be established beneath the
crystal, with a detached shear layer separating it from the outer region. The
outer region effectively rotates as a solid body with the crucible [2].
Counter-rotation yields a more complex flow pattern beneath the crystal with a
stagnation layer separating the flows driven by the crystal from the flows
driven by crucible rotation [2,3]. Typical crystal and crucible rotation
rates are in the range of I to 50 and 0.5 to 30rpm, respectively.

In addition to the natural and forced convection, there is thermo-capillary
flow near the free surface. Since the surface tension coefficients of most
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Cz melts (for Si, it is -0.43 dyne/cm/k) vary with temperature, a non-zero
temperature gradient along the free surface will cause a nonuniform surface
tension force, resulting in a finite shear stress at the free surface. For
example, for a melt with negative coefficient of surface tension, the surface
tension diminishes with increasing radius, provided the crucible temperature
is higher than the melt temperature. The resultant effect is that the melt
beneath the free surface is pulled toward the crystal. Motion induced in this
manner is called Marangoni flow, and is further complicated by the nonplanar
nature of the free surface, the loss of heat from the free surface and the
consequent destabilizing vertical temperature gradient that gives rise to a
Benard-like convection.

In addition, the shape of the melt-crystal interface is controlled by both the
coupled effects of heat transfer throughout the crystal growing system and the
shape of the free surface. Capillarity and the wetting of the crystal by its
melt determine the position and shape of the meniscus.

1-3. Background

Recent tutorial and review articles [4-8] display the nature of such
convective motions and their influence on the quality of the crystal.
Intensive research to understand the hydrodynamics of the Cz growth system
have been carried out in the past decade. As discussed earlier, numerical
investigation of Cz growth can be classified into three groups (see Table
1.1.1). Group A involves the studies on the hydrodynamics of the melt phase
with the assumption of a planar free surface and melt crystal interface.
Group B involves studies of temperature distribution within both melt and
crystal phases. Group C studies combine both that of Groups A and B, without
the assumption of planar interfaces.

The Group A assumptions include: 1) The melt-crystal interface and free
surface are planar; 2) The crucible and crystal are at uniform temperatures
and rotating symmetrically; 3) Crystal phase is not studied; 4)The pulling
velocity is zero. The first assumption ignores the kinetics of the surfaces
which are important when the solute distribution and thermal gradients near
the interface are to be determined. The second assumption rests with
formulation limitations as it is restricts to axisymmetric situations. Since
the crystal phase is not studied in this group, effects due to heat loss at
the vertical surface of the crystal cannot be incorporated at the planar
melt-crystal interface.

The pioneering work on numerical simulation of convective flow was carried out
by Kobayashi [9,11] and Langlois [10] using a model that employed a vorticity-
stream function procedure. In these models, the axial and radial velocities
were replaced by a stream function through the use of the continuity
equation. The pressure was explicitly eliminated by introducing the vorticity
function, and the governing equations were then written in finite difference
form. Kobayashi [9,111 further assumed a steady state and solved each
equation successively. Since the unknowns were coupled, the entire procedure
was repeated iteratively until prespecified convergence criteria was met.
Langlois [10] formulated the problem as a transient and used a forward time
explicit scheme. The stream function (continuity) was calculated at each time
step by a successive over-relaxation method. This numerical method (either
steady or unsteady) was then used to simulate convective flows in Cz systems
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(also in a floating zone system, e.g., [12]) with various nondimensional
parameters [13-16]. Instead of using a finite difference and SOR methods for
the vorticity-stream function formulation, Crochet and Wouters [17] used
finite element methods to study convective flows due to various rotational
rates and buoyancy forces. The numerical method has been demonstrated to be
able to handle oscillatory natural convective flow. These papers have made
significant contributions to the understanding of the hydrodynamics of the
melt.

In the Group B studies, only the temperature distribution in the melt and/or
crystal phase is solved. A study by Williams and Reusser [18] used a finite
element method to determine the temperature distribution in the crystal.
Their work assumed a planar melt-crystal interface and specified the boundary
conditions from the measured surface temperatures. This approach is not
general and is unsuited to predictive purposes. More recently, Derby et al.,
[19] included a meniscus and nonplanar interfaces in two dimensional, steady
state, small scale prototype calculations applicable to liquid encapsulated
Czochralski (LEC) growth. The thermal equation in each phase was solved using
a finite element technique. However, phenomena associated with fluid flow
were totally ignored. Thus the shape of the meniscus was simplified to the
well known Young-Laplace equation, for which an analytical solution exists
[20]. The isotherm at the melt temperature was used to define the
melt-crystal interface. Since the flow field was not solved, a solute
distribution cannot be determined from this analysis. A study by Ramachandran
and Dudukovic [21] used an iterative finite element method to predict the
temperature distribution and the position of the melt-crystal interface in the
crystal phase. The method accounted for the radiative heat transfer between
the various 'surfaces' presented to the crystal pulling apparatus.

In Group C studies, Chang and Brown [21] formulated the vertical Bridgeman
system using primitive variables and approximated the solution using a
Galerkin finite element method. In their study, the steady state two
dimensional Navier-Stokes equations are solved for the case in which flow is
due to free convection only. The isotherm at the melt temperature is
considered as the melt-crystal interface and is approximated by a set of
Hermite cubic polynominals. The coefficients associated with the field
variables and interface shape formed a nonlinear set of algebraic equations.
In the vertical Bridgeman system, the melt fluid is continuously fed from the
bottom while the crystal is formed at the top. No free surface exists in this
configuration. The range of parameters studied in these groups is summarized
in Table 1.1.2.

Because of the difficulty in making measurements in the melt (e.g. opaqueness,
high temperature of the melt), simulation experiments [23-27] have be-n
performed to study melt behavior under Cz conditions. The crystal is
simulated by a rotating disc, and the crucible by a heated cylindrical
container. The working fluid (simulating the melt) is taken to be water
[23-25, 27] and NaNO 3 [26] so that the Prandtl number is of the same order
as the oxide melts. Photographs from Miller [25] show a 'wheel spoke' pattern
at the free surface. The 'ripples' are believed to be due to Marangoni
convection resulting from surface tension gradients along the free surface.
At high crystal rotation rates, three distinct zones are observed [251: the
stagnant layer at the bottom, the thermally driven zone in the middle, and the
crystal driven zone near the crystal. Lamprecht et al., [26] put tracer
particles in NaNO3 , so that when the fluid was illuminated with a sheet of
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light, photographs could be taken. By measuring the relative positions of the
tracer's particles between time frames, radial velocities were measured. The
temperature distribution was measured with thermocouples. Marangoni
convection was not observed because the surface tension coefficient for
NaNO3 is small (-0.07 dyne/cm/k at 300°C, -0.17 dyne/cm/k for water at
50°C). In another experiment done with water (Jone [27]), an array of
thermocouples was located 1 cm below a rotating disc (simulated crystal) to
measure the mean and fluctuating temperature when the rate of rotation of the
disc was increased. Observed experimental flow patterns and temperature
variations qualitatively agree with the melt behavior under Czochralski
conditions.

Another aspect of crystal growth being studied is how the dopant impurities
and heat are transported to the melt-crystal interface as a result of the
convective flows. The flows due to the rotating crystal and the resultant
solute distribution produced by segregation at the melt crystal interface have
been treated by Wilson and others [28-32] using the similarity solutions of
Von Karman [33] for the fluid flow. The melt-crystal interface is prescribed
to be a planar disc normal to its axis of rotation. A suitable coordinate can
be employed to accommodate the nonplanar crystal surface. The importance of
these studies is that it is the behavior of the fluid adjacent to the growing
crystal that is the most influential in controlling the solute uptake. The
bulk of the melt provides the reservoir of solute. The spatial distribution
of the solute in the melt is assumed to be uniform. Originated from Burton et
al., [34] an analytical formula can be written for the effective segregation
coefficient as a function of equilibrium segregation coefficient and a
parameter, A. The latter can be interpreted as a concentration boundary
layer thickness. Several numerical correlations for the parameter, A, as a
function of the rotational rate and pulling rate of the crystal were developed
in [28,32]. Additionally, Wilson and Favier [30,31,33] also included a time
dependent sinuodial varying pulling rate in their model to study compositional
inhomogenities in the crystal. The rotating disk model [28-32,34] was limited
to cases with a uniform spatial impurity distribution. Molecular oxygen which
comes from a continuous corrosion of the crucible walls, is transported
throughout the melt and the majority of it evaporates from the free surface
with some fraction incorporated in the grown crystal. In this case, the
spatial distribution within the melt is not uniform and thus this model is not
applicable.

As discussed earlier the goal of the present study was to overcome many of the
limitations associated with earlier studies and to develop numerical
procedures that are capable of accurately predicting for Cz processes: 1) the
thermal hydralic behavior of the melt, 2) the thermal behavior of the crystal;
3) the shapes of the free surface and melt-crystal interface; and 4) the
species distribution in the melt fluid.
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2. MATHEMATICAL ANALYSIS

2-1. Introduction

In th( present study, the governing equations for the liquid state are the
conservation equations for mass, momentum and energy of the melt. The only
equation considered for the crystal is the heat conduction equation. The melt
and crystal phases are coupled through appropriate thermal conditions applied
along the interfaces. The interfacial positions are governed by nonlinear
kinematic conditions, as discussed below. The solutions to the melt flow
field and the temperature distribution inside the grown crystal, along with
the positions of the interface, are obtained by a well documented numerical
procedure known as the consistently split linearized block implicit (LBI)
scheme [35] (see Appendix A).

The addition of free surface boundary conditions introduces nonlinear effects,
since the location of free surface is not known a priori, and must emerge as
part of the solution. The unknown surface location is obtained from a partial
differential equation boundary condition that is coupled to flow within the
melt. At the melt-solid interface, the conservation equations for the melt
are coupled to the thermal conservation equation for the crystal through the
energy balance condition.

In the calculations of the species concentration in the melt, species are
assumed to be transported by two mechanisms; i) melt fluid motion, and ii)
species diffusion. Concentration gradients induced by the temperature rise at
the melt-crystal interface due to both latent heat of crystallization and the
curvature of the melt-crystal interface are assumed to be small. Thus motion
duc to these concentration gradients is assumed to be small and is neglected.

2.2. Governing Equations

The equations describing flow within the melt and energy transport within the
crystal are discussed below. Each of these equations are expressed, in two
forms: a) in dimensional form, and b) in dimensionless form.

The first equation of interest is that governing the distribution of
temperature within the solid crystal. The equation for heat transport is:

a T + -(u'T a. V 2 T (1a)
at s 5Z Ps S

G) a + L( 0) .JV2 ( (lb)
atS 5aZ P a Pe

In the above Ts is the temperature of the crystal, Up' the speed at which
the crystal is pulled, a s is the thermal diffusivity which is defined as
ks/Picps, and k s is the thermal conductivity, cps is the specific heat

capacity and p; is the density. The dimensionless form of the equations
is clear. 8s represents T/Tm where Tm is the temperature of the
melt. up - Up'/us. The reference velocity is u s - Rs ws. R s is the radius
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of the crystal. ws is the angular frequency of rotation of the crystal.
The dimensionless number Pe is referred to as the Peclet number and is given
by Pe - usrs/as* Note that the crystal radius is taken as the reference

length, and the reference time is l/ws .

The governing equations for the melt are as follows: (1) First there is the
continuity equation

-L p + V. (pU:) =0 (2a)
at

+ V • = 0 (2b)

where p' is the density of the melt and u' its velocity. In dimensionless
form the density is normalized to the density of the melt at the melt
temperature. The second melt equation is the momentum balance equation, or
more commonly the Navier-Stokes equation

U:IDV P 2 U I V ( V u) (3a)_. .+ v .(uLu) _ I VP'+EFvU: 1 va](a
at P

aN u + LL. (uu) 2p Vp+ E+-[V2IL- -3 V(V'L)
p 7e L3 J (3b)

Here F' is a force per unit mass and P' is the pressure. v is the kinematic
viscosity which is defined as p/p'. In dimensionless units, the reference
pressure is pus 2. The dimensionless Reynolds number Re is given by
PUsRs, where y is the viscosity.

A

The third melt equation is the energy equation

a v2
T, +V. (uT) = cV T (4a)

a I I

+V. (uO ) I V2o tRePr (4b)

In the above al is the thermal diffusivity. In dimensionless form, Pr is
the Prandtl number, and is given by v/op. The fourth melt equation,
species transport equation, is

-8-
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a2 (5a)
C, + V. (u:C) = 2 c 5

at K K K

a + V.(u.C ) (Sb)
(K K ReSc K

where Sc is referred to as the Schmidt number, and is given by p/D, and D is
species diffusivity.

The force per unit mass term in equation (3) is given by

F'= -g(I+(T-T)) (6a)

Gr Tm -E + " r +  ( 0 - 0) (6b)
Re 2 AT b

where g is the acceleration due to gravity and P is the volumetric expansion
coefficient of the melt. Fr is the Froude number and defined as Us2/gRs,
while Gr is the Grashof number and is defined as gaATR3/v2 . Here, the

Bousinesq approximation is adopted to account for the effects of natural
convection. The formulation of the crystal growth problem allows for the
incorporation of compressible fluid properties. While not likely to be
important for a melt that is exposed to low pressure, significant departures
may occur under either high pressure and/or encapsulation. The incorporation
of compressibility into the algorithm requires the presence of an equation of
state. Care must be taken in the choice of such an equation, in that it must
yield results that are virtually identical to those obtained by others in the
incompressible limit. The equation of state used below has been successfully
applied to compressible fluids, and yields the same results as others in the
incompressible limit [36]. This equation is:

P = pR(Tr -- ') (7)

where R is the universal gas constant.

Further, according to the analysis given in [36], if Tr were the local total
temperature in the fluid, equation (7) would represent the perfect gas law for
an ideal fluid. However, if Tr is taken as a fictictious constant temperature
of high enough value so that the Mach number Ma based upon u2 and Tr is
small, i.e.,

I ,1"Ma =<< 1.02, A (8)

VY R(Tr - IL 12/2C P
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then, equations (2) and (3) will represent the governing equations for nearly
incompressible flows. Since, in the present work, the melt is considered as
nearly incompressible, all the cases investigated in the present work have Mach
numbers on the order of 10-2.

Equations (1) through (5) are written in vector form. The specific dependent
variables to be determined are the temperatures, pressure, concentration and
velocity components in the direction of the cylindrical polar coordinate
lines. In addition, the locations of the free surface and melt-crystal
interface will be determined along with the solution of the above equations. An
important and novel feature of the study is that a time-dependent, generalized
coordinate transformation is introduced to accommodate the motion and the shape
of the free surface and melt-crystal interface.

2-3. Free Surface Boundary Conditions

The free surface defined here is the interface between the melt and a gas. In
this situation, the stress tangential to the surface is approximated as zero.
The stress normal to the surface must exactly balance any externally applied
normal stress. With surface tension included, the stress conditions are
derived from,

3
Sn - yn. (9)i=1 , ij

where nj are the components of the unit vector normal to the surface, -j is
the stress tensor and I is the force due to surface tension. For a Newtonian
fluid and axisymmetric flow, the stress conditions can be simplified as [38]:

(i) Tangential stress condition (along the azimuthal direction)

U_) n0 (10)

Urn r 1

(ii) Tangential stress condition (along the radial direction)

1_ d_ 132 2)U ay
2n 1n 3(. 1 au a )+( 3-n1u3 -L 2 -n1

a3 r az ')an- z a 3r  WO0 ao a¥ ,n y . 1a (1

(iii) Normal stress condition

P - FZr ....... +
a B oL + qp2)3  r (I+ q-2 )1(12)

2 a t, 2 u 3n21+ 1n2+.+ n n + zF
RL ar 1 ar az 1 3 0z3
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where Bo is the Bond number and is defined as pgRs/7, and determines the
ratio of the surface tension to gravational forces, there q is the free
surface elevation and n', q'' are first and second derivatives with respect
to r, respectively. n,. n2, and n3 are r, p, z components of a unit
normal vector at the free surface. The stress conditions are also called
dynamic conditions because they are the force balance conditions which must be
satisfied along the free surface at all times.

In addition to the dynamic conditions, a kinematic constraint is used to
determine the position of the free surface. This condition is based upon the
constraint that the normal velocity of the fluid at the interface is the same
as the normal velocity of the free surface. In Eulerian form, it can be
expressed as,

D (13)
Ft(1- Z) = 0 (3

where D is the substantial deriviative [44]. The location of the free
UT

interface is determined by time integration of the above equation.

2-4. Velocity Boundary Conditions

Velocity boundary conditions along the melt-crystal interface and crucible
wall are also required. Along the melt-crystal interface, 'no-slip' and mass
balance conditions are imposed. The 'no-slip' condition implies

I I I - IL . (14)

and the mass balance condition is,

PJII. D i  = Ps Jp. i  (15)

where ri, 1i are the unit tangential and normal vectors at the
melt-solid interface. The velocity boundary conditions along the crucible
wall are

I 1 • . = 0 L  - 0 (16)

where rc, nc are the unit tangential and normal vectors at crucible
wall, e.g., the tangential vector at the crucible bottom wall is a horizontal
vector, while the tangential vector at the crucible side wall is a vertical
vector.

A special kind of velocity boundary condition needs to be used at the junction
where the moving surface meets the stationary wall. Physically, 'no-slip'
conditions should be used at these points; however, it will cause numerical
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problems if u is zero at the junction. Here, according to the kinematic
condition, the surface will never move at these points. Experience teaches
that the surface should move according to the rotating boundary conditions.
Thus, at points where the moving points meet the crucible side wall, we allow
velocities tangential to the walls to slip, and velocities normal to the wall
to be 'no slip'. The slip velocities are obtained from the kinematic
condition. At every time step, the kinematic conditions are applied at the
surface, except at the junction. The location of the surface at the wall is
obtained from a linear extrapolation from the interior points.

2-5. Melt-crystal Interface Boundary Conditions

There are two conditions that need to be satisfied along the melt-crystal
interface; 1) the temperature must be equal to the equilibrium melting
temperature, and 2) the net heat flux across the interface must equal to the
latent heat absorbed per unit volume during solidification. The first
condition states that the melt-solid interface is a constant temperature
surface i.e., T - T . The second condition can be written into the form of aS . m

•

kinematic condition and used to determine the position of the melt-crystal
interface. We will now develop the second condition.

The heat, AQi, delivered to or removed away from the melt-crystal
interface by phase i in a time interval, At, can be written as

AO A q nAt

where qn i is the heat flux normal tc the interface and An is the cross-
sectionai area perpendicular to the heat flux. Using Fourier's law for the
heat flux, the net heat delivered to the melt-crystal interface is

Q - AQI-AQs, i.e.,

0-A A (k T k TI ) (17)

where n is the unit normal vector at the melt crystal interface. Here, heat

transported through radiation is ignored This net heat, according to the law
of conservation of energy, should equal to the latent heat gained due to
crystallization process which is

Aq * p h (18)nl mhs

where 6 is the change of interfacial positions in time, At; and hsJ is
the latent of crystallization

Coupling the net heat flux across the interface to the latent heat absorbed

yields:

AI- A -L - (19)

Pm hs

To treat equation (19) specifically, we note that foi the Cz problem, the
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crystal is pulled out Up at a constant velocity (within a reasonable time
period), i.e., the melt-crystal interface is rising at a constant rate. If

A
q* is written as A17 An where An is the area averaged change of interfa-

A
cial positions and An accounts for the spatial variations of change of the
interfacial positions, then Aq/At' - An*/At' + An/At'. Further, if At' is

small, the above quantities can be approximated by time derivatives, then the
above equation can be written as

,1 1 [k T - k n1 (a mhs! S- s -n!+U

where an = up' is the crystal pulling velocity. In nondimensional form,
at'

A 1 PsTm A (21)

~t Pe SpmAT + up I (1

where Pe and S are Peclet and Stefan numbers, respectively. S is defined as
hs2/CpsAT and k is the ratio of melt thermal conductivity. Note that
in crystal growth problems, up is the crystal pulling rate which is exter-
nally controlled; thus, a/at is a measure of nonuniform crystal growth (in
both space and time). Furthermore, the shape of the melt-crystal interface is
of great interest in crystal growth process control because it affects the
distribution of dopants and unwanted impurities in the crystal, and is
responsible for residual strains in the crystal.

In the present model, the crystal pulling velocity is determined from
integrating equation (21), i.e.,

1 P T M  f 2xr f ( (22)P 2n PeSp AT jj "s o" 22)

m 00

Physically, the crystal pulling velocity is obtained from the vflume averaged
net heat across the interface. Since we have assumed a constant crystal
diameter growth in a steady state situation, the total net heat removed from
the melt-crystal structure will be from the heat gained due to crystalliza-
tion. In steady state calculations, this relation is exact, but in transient
calculations, we have assumed the volume average of the non-uniform growth 4s
small.

2-6. Thermal Boundary Conditions

Three types of thermal boundary conditions are involved in our analysis for
the liquid and solid phases. They are, 1) constant temperature boundary
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condition, 2) constant heat flux boundary condition, and 3) constant heat
radiation boundary condition. For the liquid phase, constant temperature
boundary condition are always applied at the crucible walls and crystal
surface. A combination of heat flux and heat radiation boundary conditions
can be applied at the free surface. For the solid phase, constant temperature
boundary condition is applied at the melt crystal interface. These boundary
conditions are outlined next.

1) Constant temperature boundary condition

Liquid: 01 - 0. at crystal surface
01 - Bc at crucible wall (23)

Solid: Os -
0m at melt solid interface

2) Heat flux condition

Since argon gas is blowing along the crystal surface and free surface,
convective heat transfer may be important, thus:

Liquid: k Nu(-a at free surface7n gi ( 6a) (24)

Solid: aos  at crystal surface
- -kg s Nu(O -0 a) (above free surface)

kgi is the ratio of conductivity of the gas to conductivity of Phase i
Q or s), Nu is the Nusselt number which is defined as hRs/kg where h
is the heat transfer coefficient of the gas and k is the thermal conductivity
of the gas. 9a is the ambient temperature. The Nusselt number can be
obtained through some empirical relations, e.g. in Appendix B. Note, at the
top of crystal, a zero flux condition is used to simulate an infinitely long
grown crystal.

3) Heat Radiation Condition

In a crystal growing system involving N surfaces with different emissivities
at different temperatures, the mutual radiation interchange is adequately
treated by introducing the concept of geometrical shape factor, fk. In an
ideal situation, fkj is 1. The net heat flux radiated from the kth surface
is expressed by,

qk N k (T4-T (25)
i-1 kj k j

j*k

When considering only the direct radiation interchange, a is the Stefan-
Boltzmann constant, T3 and Ej are the temperature and emissivity of the
Sth surface. For the present application, we only consider heat radiation
trom the free surface to the gas (argon) or heat radiation from the crystal
surface above the free surface to the gas phase, and assume a constant ambient
temperature above the free surface. A better approximation for the ambient
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temperature can be used if the heat transfer and flow conditions in argon gas
are known. The heat flux radiated can be simplified as,

4_ )
-kAL -Om(TTa) i. ts

Nondimensionalizing the above equation and introducing a Biot number, H, the
above equation becomes

H AT (4 e 4e) (26)

an (R c-1) Tm 4

where Rc is the nondimensional crucible radius, and H is defined as
eaRsTm3/kj.

2-7. Species Boundary Conditions

At the melt-crystal interface, the flux condition on the concentration is,

aCk e1/2 (27)-(1 K ok) aRe SCCk=0

where Kok is the equilibrium distribution coefficient for species k. The
suction parameter, a, is defined as up/I(wv). We have assumed that diffu-
sion into the crystal is negligible. For most species, in Si growth, the
coefficient aRel 2 Sc is on the order of 100 with Sc on the order of 50.
Numerically, it means a very fine grid must be used near the interface to
resolve the boundary layer. Physically, the boundary layer for the convec-
tive-diffussive species equation is approximately Sc /2 times thinner than
the momentum boundary layer. To reduce computational efforts, we do not
resolve the boundary layer of the species equation in the bulk flow
calculations. Instead, we use the zero flux condition:

aCk (28)
- =0

-Ia
To obtain the resolution of the species distribution near the interface, a

solute transport submodel has been developed. This submodel makes use of the
solution obtained from the 'bulk flow' calculations.

At the crucible walls, as well as the free surface, a zero flux condition is
also used. Here we assume the dissolution and vaporization rates at the
crucible walls and free surface respectively, are small. In order to
calculate the oxygen concentration in the melt, a model for the rate of
dissolution and vaporization of oxygen needs to be developed (either from
experimental measurements or derived from crucible properties and argon gas
flow dynamics). This is beyond the scope of the present effort.
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2-8. Species Transport Submodel

It was found [28-32,34] that the bqhavior of the fluid adjacent to the growing
crystal interface is a primary factor in controlling the species uptake to the
crystal. In our model, we assume that species diffusion and forced convection
(due to rotation of the crystal) are important in a thin region with thickness
A near the melt-crystal interface. Solute impurities in the melt and from
tfe crucible wall are transported by "bulk" flow and reach the boundary of
this thin region. The governing equations (2) and (3), can be simplified to a
set of ordinary differential equations [33] to provide a flow field for the
species equation (5) in this region.

In the thin region, if the natural convection is ignored, the nondimensional-
ized axisymmetric continuity [2] and Navier-Stokes equations [3] can be
reduced to the following system of equations [33].

aH . (29)2F + - = 0

2
2 2 F (30)

F _GF+H - =0 (30)

G a 2 G (31)

2FG + H 
2 -

aB a2H (32)

- 2 =0

where equation (29) is the continuity equation. Here equation (30) througn

(32) are the three components of Navier-Stokes equation and u = rwF, v =

rwG, w
- HY(vw), P = pBJ(wv), = zj(wv) with the following boundary conditions:

1) at = qo: F = 0, G = 1, H - a, B - 0

2) at -= o-S8m; F -= 0

Where qo is the axial position of the interface and 6m is the momentum
boundary layer thickness, a is the suction parameter as defined earlier. The
solution to the above equations depends on the suction parameter, i.e., for a
given suction parameter the flow field can be calculated once and used for
various species calculations.

To obtain better numerical resolution in both radial and axial direction, the
species concentration, equation (5) in steady state, is nondimensinalized by
two reference lengths. The axial distance is nondimensionalized by the
crystal radius while the axial distance is nondimensionalized by Up/D. The
resulting equation in steady cylindrical polar coordinates is,
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k a 2 C k...2......L r' U* rC k) + -(VC k) - 2 7 - (2 (33)
a Sc a S!Re ra' a

with boundary condition:

1 Ck UP
1) -(l1-Kok)=O at q2-i D

2) C k = CIk (r) at q;=1 US P

3) -o = at r.O

2 C
4) =-0 at e'=

where w' - w/u' - H( )/a, u' - u/Rsw, ~'-zu'/D - aSc , r' -r/Rs- Gik (r')
.p pis the species concentration at the lower boundary of the thin layer region

for specie k, and must be matched with the values obtained from "bulk" flow
calculations. If Clk is a constant, the solution for Ck reduces to one
dimensional solutions.
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3. NUMERICAL ANALYSIS

3-1. Introduction

The numerical procedure used to solved the governing equations is a consis-
tently split linearized block implicit scheme originally developed by Briley
and McDonald [35] and embodied in a computer code termed MINT, an acronym for
Multidimensional Implicit Nonlinear Time-Dependent. The basic algorithm has
been further developed and applied to both laminar and turbulent flows. Since
the scheme has been described in detail in several publications available in
the open literature, it will not be detailed here. Rather only a brief outline
of the procedure will be given in the following:

The governing equations are replaced by an implicit time difference
approximation, optionally a backward difference or Crank-Nicolson scheme.
Terms involving nonlinearities at the implicit time level are linearized by
Taylor series expansion about the solution at the known time level, and spatial
difference approximations are introduced. The result is a system of
multidimensional coupled (but linear) difference equations for the dependent
variables at the unknown or implicit time level. To solve these difference
equations, the Douglas-Gunn procedure for generating alternating-direction
implicit (ADI) splitting schemes as perturbations of fundamental implicit
difference schemes is introduced in its natural extension to systems of partial
differential equations. This ADI splitting technique leads to systems of
coupled linear difference equations having narrow block-banded matrix
structures which can be solved efficiently by standard block-elimination
methods.

The method centers around the use of a formal linearization technique adapted
for the integration of initial-value problems. The linearization technique,
which requires an implicit solution procedure, permits the solution of coupled
nonlinear equations in one space dimension (to the requisite degree of
accuracy) by a one-step noniterative scheme. Since no iteration is required to
compute the solution for a single time step, and since only moderate effort is
required for solution of the implicit difference equations, the method is
computationally efficient; this efficiency is retained for multidimensional
problems by using ADI matrix splitting techniques. The method is also
economical in terms of computer storage, in its present form requiring only two
time levels of storage for each dependent variable. Furthermore, the splitting
technique reduces multidimensional problems to sequences of calculations which
are one-dimensional in the sense that easily-solved narrow block-banded
matrices associated with one-dimensional rows of grid points are produced.
Consequently, only these one-dimensional problems required rapid access storage
at any given stage of the solution procedure, and the remaining flow variables
can be saved on auxiliary storage devices if desired. Since each one
dimensional split of the matrix produces a consistent approximation to the
original system of partial differential equations, the scheme is termed a
consistently split linearized block implicit scheme. Consistent splitting has
been shown by a number of authors [36] to considerably simplify the application
of the intermediate split boundary conditions.

The present work involved an extension of the LBI scheme : in every time step,
a boundary fitted coordinate system is constructed to accommodate the time
dependent characteristic of the free surface and melt-crystal interface. A
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simple Eulerian height function is used to represent the free surface and the
melt-crystal interface. This function is defined as the distance from a
reference line and is obtained from the kinematic conditions equation (12) and
equation (14). The computational domain is shown in figure 3.1.1.

For numerical calculations, the height function is discretized into points
sometime called markers. These markers are then used to define the time
dependent boundaries. Since a boundary fitted coordinate system is used, the
boundary is part of the grid system at all times. For this reason, flow
variables at the moving boundary are well defined and application of the
boundary conditions at these boundaries is straightforward.

The numerical procedure can be summarized in four steps: 1) the governing
equations of each phase and their corresponding boundary conditions are
transformed into a boundary fitted coordinate system according to the shapes
of the interfaces; 2) the equations of each phase are solved in the
transformed coordinates using the LBI scheme; 3) interfacial positions
(include free interface and melt-crystal interface) are advanced using the
kinematic conditions, and 4) advance time step and repeat the sequence. A
flow chart for the present numerical scheme is shown in figure 3.1.2.

3-2. Transient Capability

The solution algorithm for iterative solution of steady solutions has been

written as the following split LBI scheme (equations A-8)

(A - PAtL) (0* - *fl = At (D' + S n ) (34a)

(A - PAtL') (0** - 0n) = A ( * + O1) (34b)

(34c)
(A - A tL')_ n) = A ((** +

which is an ADI scheme to approximate the linearized unsplit scheme (equation

A-6).

(A - PAtLn)(, n~l - #n) = At (D' + S n )  (35)

to second order in At. Combining equations (34a) through (34c) gives

(A - OAtL) A- ' (A - fAtLn) A- ' (A - PAtL') (,n+I - n At (Dn + Sn ) (36)

A comparison of equations (35) and (36) shows that splitting error terms such
as

(pAt)2 LIA-L2 (n+1 n 0 ) (37)

arise due to the ADI scheme. Although these splitting error terms vanish for
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a steady solution (since on+i - on), they do affect transient accuracy in

unsteady applications. The term (equation (37)) is of second order in At
and, hence, does not lower the formal accuracy from that of equation (35).
However, the error term (equation (37)) has a different functional form from
the truncation error of the unsplit scheme, and when matrices such as A -'
are stiff (i.e., widely differing eigenvalues), the splitting error can cause
large errors in transient solutions. Stiffness in the matrix A-' occurs
at near incompressible Mach numbers.

The splitting error can be removed by iterating at each time step. One method
of iterating is to replace 0n+1 by qjk + 60k in the unsplit scheme (35), divide
by At, and add an artificial time derivative approximation A Aok/Ar
to equation (35). Here, k is the iteration index, Ar is an artificial time
step, and A may be chosen to be different from A. The result can be written

(- + - -L) k =D + S (2- L 0 (38)
AT At At

A Douglas-Gunn type of splitting-is introduced, and the result can be written
as

(B - 0 L') AO* - RHS of Eq.(38) (39a)

(B - PLn) A0** BA,0 (39b)

(B - PL3) A~k = BAO** (39c)

where B - An/AT + An/At.

Note that when the iteration equations (39a) through (39c) converges to a
steady solution (Ak-+O) then 0k,0n+i and the steady solution satisfies
the linearized unsplit scheme (equation (35)). The steady solution is
independent of A and Ar, and these quantities can be chosen to obtain rapid
convergence. The matrix conditioning technique of [36) can be employed for
low Mach number calculations, and then A is replaced by A multiplied by a
diagonal conditioning matrix.

Since an iteration is being performed at each time step, there is the option
of updating the time linerizations which were used in equation (35). In this
case, equation (38) is replaced by

A k 4k

(- + - - 0L0) Ak +(D ++ S) H (40)
AT At At

and split in the same manner as equations (39a) through (39c).
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If equation (40) is used, then the converged solution will satisfy the
nonlinear implicit scheme

[H( " 1) - H(,n)] / At = (D + S) n+ + (1 - )(D + S)' (41)

Test calculations have been performed using equations (39a) through (39c) on
simple problems, and it was found that convergence at each time step can be
obtained in approximately 3 to 15 iterations, depending on the physical time
step used. Fewer iterations are required as the physical time step At is
reduced.

3-3. Body-Fitted Coordinate Transformation

The numerical solution of the Navier-Stokes equations for problems with a
moving boundary is complicated by the need to simultaneously compute both the
flow field and the time-dependent boundary location as the calculation
proceeds in time. In calculations of this type, stress conditions or heat
flux conditions are applied along the time dependent boundaries. A
time-dependent body-fitted coordinate system is therefore most suitable and
chosen for the present studies, because stress conditions and heat flux
conditions can be specified along the coordinate lines.

Body-fitted coordinate systems avoid the need for irregular shaped finite
difference computational cells at computational boundaries thereby alleviating
the complex computer coding problems associated with irregular shaped cells.
In addition, spatial truncation error associated with irregular finite
difference cells is avoided by the use of body-fitted coordinates.

Various approaches are available for generating body-fitted coordinates,
although in general they can be categorized into two generic groups -

algebraic and elliptic method. Algebraic methods have the advantage of being
conceptually simple for complex boundary geometries. However, it is often
necessary to establish suitable functional forms for each family of
coordinates for each new configuration. The main advantage of elliptic
generation is that the method is applicable to complex geometries without the
need to modify the basic approach for each new configuration.

In the present work, an algebraic method is used for all calculations except
the case with a mensicus. In the meniscus case, elliptic methods based on the
work of Thompson and his coworkers [39,40] are used. We discuss both methods
below:

In algebraic method, the time-dependent non-orthogonal coordinate
transformation is given by

r=f( ) 0= h(X)

z j (-r,O ,) 0
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where , X and are computational coordinates in the r and z
directions, respectively. f( ), h(x) are grid packing transformation
developed by Levy and Gibeling [41] which have the form of hyperbolic tangent

function. And

[ 2.326 -(I+sign

is a grid distribution generator originated by Oh [42], in which the comple-
mentary error function is used and Po/ oil /3i, a i are grid parameters whose
values can be made time dependent.

In the present study, the grid parameters are constants in time and are chosen

such that grids are packed at the regions where the flow (and/or temperature)
field changes most rapidly. Since F( ), H(X) are constant in time, the grid
spacings in the r and 0 direction do not change in time despite the motion of
the free surface and interface. The grid spacings in the axial direction
depend on the instantaneous locations of the free surface and melt-crystal
interface.

The above way to constrain grids is simple, especially in the present appli-
cation where the slope of the free surface and interface never becomes
infinite. However, in the case of a menicus, the contact angle is usually
close to 90' (i.e., the free surface near the crystal is close to being
vertical). In this case, the algebraic method mentioned above will produce
collapsing r and z coordinate lines which is not very desirable. To avoid
this, we use elliptic methods [43] to generate grids for the case with
mensicus.

3-4. CRAY Vectorization

It is important to realize that any application program will probably execute
faster and be able to solve larger problems when transferred to a super
computer, e.g., CRAY-IS, CRAY X-MP. This is due to the fact that super
computers technology makes use of short cycle times (in the nanosecond range)
and large memories (in the Mword range). However, in many applications, an
order of magnitude reduction in execution time may be obtained by paying
attention to the vectorization of the code.

The extra speed-up is obtained by optimally utilizing the vector processing
capabilities of the machine. In today's class VI super computers, areas which
have a direct impact on the performance of algorithms are as follows:

a) Vector functional units = the vector functional units in super computer
improve upon this performance by using pipeline vector arithmetic. In
order to utilize the arithmetic pipelines, data has to be organized so
that a steady stream of operands can be supplied. Organizing the
operands into vectors is one way to do this. The longer the vectors are.
the more efficient the pipelines can be utilized.

b) Interface of vector units with memory - the pipelined functional units
which perform the vector arithmetic, require a continuous stream of
operands to arrive at the pipeline in order to achieve optimal
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performance. From the programmer point of view, it is advantageous to
reorganize (if possible) a computational method involving two dimensional
arrays so that the array is processed in a column-wise fashion.

The numerical code MINT has been under vectorization during this Phase II
program and partial vectorization was achieved. In the partly vectorized
code, (the version that was used through out these studies), the run time was
improved by 12.8% over the unvectorized version.
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4. CALCULATIONS

4-1. Introduction

Considerable effort during the Phase II study was devoted to code development
for purposes of extending the state-of-the-art CZ studies to include
self-consistently determined shape of the melt-crystal interface. In the
interest of efficient use of computer resources, initial test runs for these
calculations were performed with values of dimensionless parameters chosen
primarily for computational resources. Calculations with parameters relevant
to silicon are discussed in Sections 5 and 6.

a) Preliminary Test of Free Surface Algorithms

Preliminary calculations were performed to check of free surface algorithm for
the rotating fluid. The configuration is the same as shown in Figure 3.1.1
except the crystal is absent. In this calculation, dimensional parameters are
normalized by the crucible radius and it's rotating velocity. Analytical
solutions with linearized free surface boundary conditions are available [44]
for qualitative comparison.

Initially, the free surface is planar and the fluid is quiescent with the
crucible rotating along the axis of symmetry. The number of grid points used
was 26 x 11 and are packed near the wall and free surface (as shown in Figure
4.1.1a).

Grids become nonorthogonal when the free surface deforms because coordinate
lines are constructed every time step according to the current shape of the

free surface.

A steady state solution was obtained after 80 time steps. As shown in Figure
4.1.1 the shape of the free surface is parabolic. Linear theory [44] provides,

V=Qr ; u=w=O

71=1 + -Frr2

where u and w are radial and axial velocities respectively. The tangential

zero shear stress condition is satisfied only if the shape of the free surface

is nearly planar, i.e. small Fr. In our calculations, which are fully
nonlinear, Fr - 0.5, and w - 1. Consequently, discrepancies on the shape of
the free surface and azimuthel velocity near the free surface are
anticipated. Maximum differences of 3% for the free surface location was
found at r - 0.6. The contour lines for v (Figure 4.1.1b) near the free
surface are perpendicular indicating zero tangential stress.

A second preliminary calculation was performed to check the algorithm for the
case of axisymmetric flow in a rotating crucible with a counter-rotating
crystal. This calculation is considered important because the algorithm was
substantially generalized after the Phase I effort, see e.g., Liu et.al [37].

The calculations were performed on a grid containing 26 radial points and 14
axial points. The solution converged to a steady solution within 80 time
steps. While the Reynolds number used is 100, and is considered low in Cz
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processes, it serves the purpose of verifying the code. Figure 4.1.2a shows
the configuration of the coordinate. Grids points are packed horizontally at
regions near the free surface and the rotating crystal. Grid points are
packed vertically at regions below the junction of the free surface and
rotating crystal, and near the crucible wall. Numerical calculations of the
velocity distribution (or field) are shown in Figure 4.1.2b and Figure 4.1.2c
and show good qualitative agreement with Liu, et.al., [37].

The computer code used in the present study is based on the linearized block-
implicit solution procedure (LBI) for compressible Navier-Stokes equations
developed by Briley and McDonald [35]. In the present development, the
temperature in the solid phase, which is coupled to the fluid through the
interfacial shape and heat flux, is solved for simultaneously with the fluid
conservation equations. For this reason, a stand-alone LBI scheme for the
transient heat conduction equation in cylindical planar coordinate with moving
boundary at the axial direction was developed.

b) Preliminary Test of Transient Conduction Solver

The next two examples are devoted to test the stand-alone LBI solution
procedures. The first example is that of a semi-infinite cylinder immersed in
a hot bath. The boundary conditions are shown in 4.1.3a. For this problem,
analytical solution exists and are obtained from Carslaw and Jaeger [45] as

2 Jo(On r )
Os=1-2 Y exp(-Ont)

n=1 PnJI (On)

where On, n - 1,2 are the roots of Bessel's function.

Jo (On) = 0

(Note, do not confuse On with the volumetric expansion coefficient.)
Figure 4.1.3b shows the comparison between the numerical and analytical
results.

Excellent agreement is obtained. The number of grid points used was 21 x 10
and At is 0.2. The CPU on CRAY-I is 0.22 msec per time step per mesh
point. In this calculation, steady state, as well as transient solutions for
the conduction equation are obtained and were verified with analytical
solution.

The next calculation performed was to verify the stand-alone LBI procedure wit-
moving boundary conditions. The boundary and initial conditions are shown in
Figure 4.1.4a. Initially, the temperature field 8s and moving surface at
X - -1 are obtained from analytical solution. In every time step the moving
surface which is obtained from analytical solution is used as the boundary
location for the stand-alone LBI procedure. The numerical solutions can be
compared to solutions to the one dimensional analytical transient heat
conduction equation and solidification surface, as given by Carslaw and Jaeger
[45].

es 1 e(-r X =-4T
es (0.5) 2 T'
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The computed temperature field is then compared with the analytical solution
every time step. Figure 4.1.4b shows the difference between the numerical and
analytical solutions at t - 2.2. The maximum error is 2 x 10 4 occurring at
the middle of computational domain. The number of grid points is 5 x 42 and
At used is 0.05.

4-2. Group I - Studies of Melt Dynamics

The purpose of this group of calculations is to study the hydrodynamics of the
melt under various rotational conditions and with different crystal immersion
depths. The response of free surface under these conditions is also
investigated. All dimensionless numbers in this group of calculations were
chosen for computational purposes, they are not relevant to silicon. Further,
in all Phase II studies the crystal immersion depth, 6o, is prespecified,
and fixed in time and space. This approximation simplifies the modeling at
the junction of the melt-solid interface and at the melt-free surface
interface. Isothermal conditions are assumed for the solid and fluid phases
are assumed in this group of calculations, i.e., the energy conservation
equations for both phases are not solved Three examples, with different
rotational conditions, w, and immersed length, 6o, are chosen as
representative in this group. In this group of calculations, the Reynolds
number and Froude number are chosen -o be 100 and 0.5, respectively. Table
4.2.1 shows the difference of parameters chosen for the three examples.

i) Run Tl-l

The first example is for a rotating crystal immersed in a stationary crucible.
i.e. w - o. Recall, the dimensionless crystal rotation is -1. The crystal
is immersed in the melt with 6o - 0.75. Grid points are packed into the
region below the free surface and near the crystal corner. The number of grid
points are 26 x 23. Figure 4.2.1 shows results at steady state; a)
coordinates configuration, b) secondary flow pattern, and c) azimuthal
velocity.

The shape of the free surface is convex up which qualitatively agrees with the
linear solution for rotating cylinder. Forced convection is created due to
rotation of crystal and is shown in Figure 4.2.1b. The azimuthal velocity
shown in Figure 4.2.1c indicates diffusion of momentum which is generated by
the rotating crystal.

ii) Run T1-2

This run is performed for the parameters of Tl-l with the addition of a
counter rotating crucible. Here c - -0.68 which means the crucible is
counter rotating 0.68 times slower than the crystal. With this parameter
change, the forced convection phenomena and shape of the free surface are also
changed. The shape of the free surface is convex up near the crystal due to
rotation of crystal and is concave up near the crucible wall due to roLation
of crucible. Again, the shape of free surface is in good qualitative
agreement with the linear solution for counter rotating concentric cylinders.
Vortices are generated due to rotating surfaces. Note that the positions of
the centers of the vortices depend on the relative (is it relative or the
actual magnitudes) magnitudes of the rotations, i.e., w. Azimuthal velocity"
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is shown in Figure 4.2.2c. Also, note that there is a region within the melt

separation two counter rotating fluids.

iii) Run T1-3

This run is performed for the parameters of T1-2 with one change, the crystal
is immersed further into the melt, 6o - 0.25. A similar shape of the free
surface is found. Location of vortices are changed due to geometric
differences. Note, with the crystal further immersed into the melt, more
surface area is available to generate shear momentum at the crystal radius.
This can be seen from the plot of azimuthal flow. Contour lines are pushed
further towards the crucible wall. In other words, the effects of crystal
rotation is larger in this case than in the previous case.

For all the calculations with free surface, normal velocities along the free
surface are monitored in every time step. They are represented by their
averages value and R.M.S. value over the free surface in every time step and
are plotted in Figure 4.2.4. The vanishing of the R.M.S. value of the normal
velocities serves as a criteria of reaching steady state solution.

With regard to computational efficiency, for this group of calculations
(solving the continuity and Navier-Stokes equations of the fluid phase) the
CPU on a CRAY-I is 2.6 msec per time step per mesh point.

4-3. Group II - Studies of Melt Thermohydraulic

In this group of calculations, energy conservation together with the Navier-
Stokes and continuity for the fluid phase are solved. Again, dimensionless
numbers are chosen with respect to computational conditions. A total of eight
examples are performed. The energy equation for the crystal phase is not
solved in this group of studies.

Five examples are performed with planar free surface and planar melt-crystal
interface. They were performed to develop an understanding of the phenomena
caused by temperature driven flow. Effects due to buoyancy, Prandlt number
and heat radiation boundary conditions are studied in these five
calculations. The shape of the melt-crystal interface and its associated
phenomena are studied in the next two calculations, and the interaction with
the solid phase forms the last study of this group. Table 4.3.1. shows the
parameters used in this group of calculations.

i) Runs T2-1, T2-2, T2-3

Examples with different Grashof numbers (or nondimensional thermal expansion
coefficients) are used to study the transition of forced convection to free
convection. And for reference comparison is made to run T1-2. In these
calculations, crystal and crucible are counter-rotating with w - -0.68 and
the height of the crystal is So - -0.75. With the Boussineq's
approximation for the density, the set of conservation equations are coupled
through the gravity force term. The Prandtl number used for these runs is
0.054. Run T2-1 to T2-3 indicate cases from forced convection to free
convection, as determined by the choice of P equation (7), which are
respectively 0, 10 and 25 (which corresponds to Gr - 0, 1.0 x 104, 2.6 x
10'). Run TI-2 is identical to T2-1, except that energy equation is also
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,I
solved in the latter case. Identical results for consequences of the fact
that the energy equation is decoupled from the momentum equation (o).
(Note: In solving this problem, the energy momentum equations are treated as
coupled equations). In Run T2-2, P is finite and energy and moments

equation are coupled, mixed free-forced convection is found. The fluid has a
stronger vertical cowponent near the wall. In Run T2-3, the free convection
is stronger than the forced convection. The vortex which was found under the
crystal in last runs disappears. The fluid under the crystal reverses
direction. When the forced convection dominates fluid is pumped out by the
centrifical force; when free convection dominates, fluid is moved toward the
center by buoyancy forces.

For cases with rotating crystal in a stationary crucible, free convection is
dominant if [14]

Gr-== 0.1

Re

In our case, with counter rotating crystal and crucible, a similar criteria is
found to be

Gr
25 0.2

Re

Note that the temperature fields are also affected by changes of heat transfer
mechanism. The differences are not large because of the choice of Prandtl
number. For small Prandtl number, the heat transfer mechanism is dominated by
heat conduction.

ii) Run T2-4

The purpose of this run is to study the effects of Prandlt number. This run

is identical to T2-2, except that Prandlt number (see equation (4)) is
increased to 1.0. In run T2-2, heat transfer is mainly due to conduction as
can be seen from the uniformity of the temperature contours. Figure 4.3.4c
shows the temperature contours of Run T2-4 are lower than those in Run T2-2,
because convection effects play a more important role for case with larger
Prandlt number.

iii) Run T2-5

Heat radiation is imposed at the free surface (H-10) to study the temperature
effects on the fluid. A constant ambient temperature of 1.026 is assumed
above the free surface. Runs T2-5 and T2-4 differ in that the latter permits
heat radiation at the free surface. It is found that the temperature below
the crystal is lower than that in run T2-4 (see figure 4.3.5). The difference
is direct: the position of temperature contours under the free surface vary
according to the choice of ambient temperature.

iv) Run T2-6

Run T2-6 is performed to study the effects due to free surface conditions with
the same conditions as in Run T2-5. These conditions are: a) counter rotating
crystal and crucible, w - -0.68, b) mixed forced-free convections, - 10,
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c) heat radiation boundary condition at the free surface, H-10, d) large

Prandlt number, Pr - 1.0. For comparison of the free surface the results of

run TI-2 are also useful.

The shape of the free surface found in this run is concave down (see figure

4.3.6) near the crystal surface, while it is convex up in run T1-2. This is

because fluid with lower temperature is carried downward near the crystal
surface. The general shapes of the free surface near the crucible are the
same in these two runs. By allowing the free surface to deform, the maximum
magnitude of secondary flow is larger than the case in T2-5. Consequently,
more heat is being carried down below the crystal. The result is that the

temperature below the melt-crystal interface is lower than those in run T2-5.
Differences in temperature in this region will influence the local formation
of melt-crystal interface, as will be shown in the next calculation. Below
the crystal, azimuthal velocities from run T2-5 and present run are also

different, due to differences of magnitudes of secondary flow. Figure 4.3.7
shows the R.M.S. values of the normal velocities of the free surface as a

function of time. Steady state is reached when the normal velocities of the

free surface are zero.

v) Run T2-7

In this calculation the temperature field of the crystal phase is assumed
uniform and at melt temperature as in T2-1 to T2-6. However, here the
melt-crystal interface is allowed to deform according to the kinematic
condition. This assumption is valid if the temperature gradient normal the

interface is small. All other conditions are identical to the last run
(T2-6). The dimensionless parameters for this calculation are S = 22, Pe -

0.1, K = 1 . Indeed, depending upon the choice of parameters, the shape of
the melt-solid interface will deform into concave or convex. Figure 4.3.8

shows the results at steady state. The differences in flow field and
temperature field indicate the effect due to the deformation of the melt-solid
interface.

This calculation is the first to show the distortion of the melt crystal

interface due to the thermal-hydralics of the melt. There are two distinct
vorticity patterns as revealed by the secondary flow calculations. The fluid
is being drawn to the center of the crystal and then thrown out radially. The

fluid is transporting the heat away from the axis of symmetry. There is a
counter transport of heat arising from the counter-rotating crucible. The dip
in the crystal interface occurs near the highest temperature zone of the
melt. Also note from the azimuthal distribution that more of the melt is
rotating with the crystal, than that experienced with the imposed flat
interface.

4-4. Group III - Studies of Species Transport Near the Interface

As discussed in Section 2-8 and repeated here that the behavior of the fluid
adjacent to the growing crystal interface is a primary factor in controlling

the species uptake to the crystal. In our model, we assume that species
diffusion and forced convection (due to rotation of the crystal) are important
in a thin region with thickness 6 near the melt-crystal interface. Solute
impurities in the melt and from tfe crucible wall are transported by "bulk"
flow and reach the boundary of this thin region. The governing equations (2)
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and (3), can be simplified to a set of ordinary differential equations (33] to
provide a flow field for the species equation (5) in this region.

The solution to the set of coupled ordinary differential equations equation
(29) through (32) is a function of suction parameter, a, and the boundary
conditions at 2 - , where is the nondimensional thickness of the layer.
Theoretically, in the case of a finite diameter disk rotating in an infinite
fluid, the radial and azimuthal velocities will decay to zero as g -

However, in practice, as shown in Schlichting [3] (with a-o), the radial and
azimuthal velocities decay asymptotically to zero on distance of within
4j(vlw), i.e., k0 - 2 -4.

There are two approaches to handle the bottom velocity boundary conditions: In
the first approach, we extend the thin layer region to a fictitious length
(i.e., - - some large value), and apply zero velocity condition
there. This condition was shown to be consistent with the velocities of the
bulk flow calculation obtained from the set of ordinary differential equations
at the point 1, where 2< I<rO. In the second approach, we find , F( ,),
G((1 ) from the bulk flow calculations and use them as boundary conditions
for the set of ordinary differential equations.

The first approach is used in the Case I study. The fictitious length is
arbitrarily taken to be 5 (>4). The zero condition i.e., F(-5) - G(-5) - 0 is
applied at 2. The solution to the set of ordinary differential equations
in this case is shown in Figure 4.4.1. The second approach is used in the
Case 2 study. The thickness of the thin layer Io - j is obtained
from bulk flow calculations, and is obtained when the radial velocity exhibits
a maximum as it is searched axially downward from the interface. F((1 ),
G( ,) are then obtained by averaging u and v in the radial direction,
respectively. It is found that (, - 0.83 and F( ,) - 0.16, G( ,) - 0.58.
Results with this condition are shown in Figure 4.4.2. The suction parameter
is taken to be zero in both cases. By comparing the results from Cases I and
2, we find that the solution to the set of ordinary differential equation
using the first approach matches the solution from the bulk flow calculations
for [I<[<[o, where ,=-I and valid at the approximation used.
Physically, it means that the fluid characteristic within J(vl/) away from
the melt-crystal interface can be described using the assumption of the thin
layer model.

By assuming that the amount of solute impurities is small, i.e., the solute
redistribution docl not affect melt hydrodynamics, t1'e convective-diffusive
species equation can be decoupled from the melt hydrodynamics equation. In
the following analysis for the species distribution, we will first use one
dimensional approximation to compare our results with Lhose obtained by pre-
vious investigators. To predict species radial impurities, a two dimensional
equation together with bulk flow solution are used.

a) One-Dimensional Species Distribution

The one-dimensional governing equation for the species distribution is
obtained by simplying equation (33), i.e.,

,3 2
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with boundary conditions, C
S(1 -ko) C =0 at '= 0

C =C L at -

The nondimensional velocity w' is obtained from the solution of two dimensional
axisymmetric flow equations (29) through (32). Here, (; is the location of

the interface and can conveniently be taken to be 0, and is equal to aSc~c,
where (<(<%. Within the range of parameters (a, ko, Sc) for silicon

crystal growth, we found that C approaches CL if 1 I> aSc. In the following

calculations, 1(cj is taken to be 2aSc- a longer computational domain

than necessary. This is chosen to ensure that the downstream boundary condi-
tion do not influence the upstream condition (in this case, C at the
interface). There are various materials (with different ko ) in the melt
and calculations were performed to cover the range of ko from 0.0004(In) to
1.4 (0). Figure 4.4.3 shows the solute distribution in the melt for various
ko using the axial flow field obtained from Case 1. Figure 4.4.4 shows the
solute distribution in the melt for various ko using the axial flow field
obtained from Case 2. In this case, - 0.83 aSc.

From the crystal grower's point-of-view, solute impurities distribution in the
melt is of less interest. It is more desirable that the su.ute impurities
level in the crystal are known. Here a commonly used parameter is the
effective distribution coefficients, keff, ko Co/CL, where ko is
the equilibrium distribution coefficient defined as:

concentration of the species in the crystal at the interface

concentration of the species in the melt at the interface

ko is usually taken from the phase diagram. The keff is then a measure of
concentration level of a particular specie in the crystal if the concentration
level in the melt is known. According to Burton, et al. (BPS) [28], keff
can be written as, ko

kef= ko + ( 1 -ko )exp(- A)

where A -In 1 aSc fexp(- fScHd )d ,]
0 0

= - Int -aScF(a, Sc)]

BPS' expression for keff is exact with respect to the one dimensional solutt-
conservation equation and boundary conditions. The function F(a.Sc) depends
on the hydrodynamics of the melt (i.e., H( ')) and can be obtained by



numerical methods. Table 4.4.1 shows numerical correlations for A obtained

by previous investigators. Their relations are limited to small values of
aSc/ 3 or (aScl/2 ). For a particular value of a and Sc, 9 different
values of ko (ranging from 0.0004 to 1.4) are used to determine the solute
concentrations at the interface, i.e., keff are known (keff - ko
Co/CL). From BPS' expression for keff, a set of A (for each ko) is
obtained. As are then averaged and a data point is generated for that
particular a and Sc. Within the range of parameters for silicon crystal
growth, we used various suction parameters, a, (from 0.0005 to 0.1) and
Schmidt numbers, Sc, (from 10 to 54) to determine Co and consequently
keff. From the numerical data we are able to find a numerical expression
for F(a,Sc);

a -0.37505

A In 11 -aSc (- + 2Sc exp (- 1.52 aSc . M
2

This formula can be reduced to the BPS correlation for small aSc 2/ 3 . Figure
4.4.5 shows the comparison of our empirical relations with others. The
comparison is good.

b. Two Dimensional Species Distribution

In the last section, we assumed that the radial variation of species distri-
bution is small compared to the axial variation. In this section we do not
make this assumption i.e., the two dimensional axisymmetric species equation
(33) is used for the numerical calculations. The radial and axial velocities
of the melt are obtained from the solution of the reduced Navier-Stokes
equations (29) through (32). The solute distribution level CL (r') at ('

- aSc, which is the boundary condition, is needed and obtained from the
solution of the 'bulk' flow calculations equation (5). Two calculations are
performed to validate the computer code.

The first calculations assumed CL(r') at [" - aSc be a constant. The
purpose of this calculations is to show that calculations using a two dimen-
sional equation should reproduce the results of the calculations using the one
dimensional equation if the axial boundary conditions do not vary in the
radial direction. The result is shown in Figure 4.4.6. In this case we used
a - 0.05, Sc - 53 and ko - 0.3 x 5(P). Physically it simulates the
distribution of dopant phosphorous which has an equilibrium distribution
coefficient of 0.35 in the melt near the melt-crystal interface. The crystal
is being grown in a rate of Imm/min and rotating at 4rpm. At the melt-crystal
interface, the normalized concentration level is about 1.78. The specie
distribution (in the axial direction) is identical to the result obtained from
one dimensional calculations.

In the second case, we allow CL at (' - aSc varies in the radial
direction. The values of CL at ' - aSc are obtained from the 'bulk'
flow calculations equation (5). The radial and axial velocities of the melt
are obtained from the solution of the reduced Navier-Stokes equations (29)
through (32). The purpose of this calculation is to demonstrate the
capability of the thin layer model in predicting the solute distribution (in
both axial and radial directions) in the melt near the melt-crystal
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interface. Nondimensional parameters used are the same as in first case. The

result is shown in Figure 4.4.7. It is found that the nonuniform species
distribution caused by natural convection has an effect on the distribution of
the species at the melt-crystal interface.
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5. CALCULATIONS II

5-1. Group IV - Applications to Silicon Crystal Growth

In the previous section we verified the numerical procedures which have
implemented in the existing computer code. The calculations were performed

*using nondimensional parameters not applicable to silicon crystal growth.
*These parameters were chosen to minimize the computation resources needed to

verify the code. In this section, we summarize the numerical calculations
performed with parameters relevant to Cz silicon growth under normal
conditions. Since not all growth parameters are measurable, e.g. heat
transfer coefficient at the free surface, etc., approximations were used for
those parameters.

A total of six two dimensional (no 0 dependence) calculations were performed
for silicon CZ growth. The first four cases are simulations of silicon
crystal growth with a crystal diameter of 8.8cm in a 13cm diameter crucible.
The silicon is rotating at 1.32rpm, while the crucible is counter-rotating at
0.5rpm. The height of the grown crystal is taken as 5.1cm and the height of
the melt (between the crystal interface and crucible bottom) is taken to be
3.8cm. The first two cases assumed the crucible has a uniform temperature of
1462 C, while the third and fourth cases assumed a crucible temperature of
1432 C. The fifth case shown is a simulation of silicon crystal growth in a
26.5cm diameter crucible. The crystal diameter is the same as in the previous
cases, and the crucible is counter-rotating at a rate of 0.13rpm. This was
chosen to give the same crucible Reynolds number as for the previous case.
The height of the melt is taken to be 17.7cm in this case, and the crystal
interface is assumed to be at the equilibrium Si melting temperature 1412 C.
The heat radiation condition at both the melt-argon and crystal-argon
interfaces is applied in all the cases. The sixth case simulated a growth of
a large diameter crystal (28.58cm). In this case the Reynold's number is
about 7 times larger than the other cases.

The purpose of Cases 1 and 2 is to compare the effects of the temperature
variation along the melt-crystal interface with and without the assumption of
a planar interface. Case 3 demonstrates that a near planar interface (or
nearly uniform temperature variation along the interface) can be achieved by
reducing the bouyancy effects, and proper adjustment of the heat radiation
condition. Case 4 shows the capability to calculate a case with a meniscus.
Further details of these calculations are presented below. Case 5 is to study
the effects of large crucible, while Case 6 shows a growth of large diameter
crystal.

In all the cases studied, a common flow pattern is observed: at least two
vortexes exist in the melt. One vortex is found near the crystal. This
vortex has a radially outward flow due to the rotation of the crystal. The
radial velocity (near the crystal interface) increases as the radius of the
crystal and reaches a maximum at about one crystal radius. It diminishes as
it goes further outward. At some radial distance (usually greater than one
crystal radius) the flow turns downward, reversed its direction and flow
radial inward. This change of direction is caused by another vortex which is
driven by the natural convection. The point where the first vortex turns
direction depends on the relative strength of the forced convection (induced
by the rotation of the crystal) and the natural convection (induced by the hot

34 -



crucible walls). The strength of the forced convection depends on rotational
rate and radius of the crystal. While, the strength of the natural convection
depends on the magnitude of the Grashof number and Prandlt number. The
Grashof number depends on the physical properties of the melt, temperature
difference between the crucible wall and the melt temperature, and a
characteristic length. The Prandlt number depends on the physical properties
of the melt. For this reason, the flow pattern in a large crucible (Case 5)
is much more complicated.

Details of each case study follows:

CASE 1

In this calculation, the melt-crystal interface is assumed planar, i.e., the
shape of the melt-crystal interface is predetermined. The assumption is valid
if the net heat flux along the interface is approximately constant. The
average temperature of the argon gas (above the free surface) is assumed to be
1355 C. Emissivities for the crystal surface and free surface are taken to be
0.2 (a constant for simplicity). Figure 5.1.1 shows the grid used for the
numerical simulations. Grid points are packed near the interface and crystal
corner to obtain better resolution in those regions.

Since the melt-crystal interface is planar, the rotating crystal acts as a
centrifugal disk pump which sucks up the melt and spins it out in the radial
direction. As can be seen from Figure 5.1.2, an Ekman layer of thickness
0.11cm is formed under the planar interface. The theoretical value from a
finite diameter rotating disk in a semi-infinite fluid without free convection
is about 0.14cm. The radial outward flow, due to the rotating crystal, meets
the radial inward flow, due to natural convection driven by the hot crucible
wall, at a radial distance 1.2cm away from the crystal corner. Temperature
contours for both phases are also shown in Figure 5.1.2. The zero heat flux
condition has been used at the top of the crystal, hence a certain axial
distance (in this case 5.1cm), the temperature within the crystal becomes
uniform. The axial heat flux along the melt-crystal interface is nonuniform,
which is a consequence of the neglect of the latent heat of crystallization at
the interface.

Figure 5.1.3 shows the heat fluxes along the interface in the melt and crystal
phases. The difference between the curves indicates the net heat flux removed
from the heat gained due to latent heat of crystallization. Due to natural
convection, the higher temperature melt is carried towards the interface for
r>0.3. This motion of the melt produces nonuniform heat flux along the
interface in the melt phase and, consequently, nonuniform solidification at
the interface results. Physically, nonuniform solidification along the
interface means a nonplanar interfacial shape. This example shows that if the
assumption of a planar interface is used, uniformity of the net heat flux to
the interface must be checked to verify the consistency of the assumption.

The concentration distribution of an arbitrary impurity is shown in Figure
5.1.4. The distribution is calculated by assuming no loss or creation of
species at any surface. For convenience, the concentration level is
normalized to a reference concentration. Since the species boundary layer
thickness is about Sc - 7.3 times thinner than the momentum boundary layer
thickness, numerical resolution of the concentration distribution will be
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inadequate near the interface. A zero condition is used at the interface for
this reason, hence, in this 'bulk' flow calculation, species concentration
levels near the interface are valid only outside the species boundary layer.
A submodel (thin layer) was developed to resolve the species boundary layer
near the melt-crystal interface as discussed in Section 4-4. Concentration
levels at the interface from the 'bulk' flow calculation are used as boundary
conditions in the submodel calculation. In the thin layer, natural convection
effects are assumed to be small, and the fluid flow is solely due to the
rotation of the crystal. In this case, the thickness of the thin region is
taken to be 0.8j(v /w) (0.11cm). Phosphorus, which has a segregation
coefficient, ko, of 0.35, is chosen for the numerical calculations. Using
the rotational rate of the crystal and a calculated pulling rate equation (14)
of 0.2mm/min, the suction parameter 'a' is determined to be 0.0175.

Figure 5.1.5 shows the concentration distribution inside the thin layer. We
note again that from a crystal grower's point of view, the species
concentration distribution in the melt is of no interest; rather, the species
concentration level in the crystal is of primary interest. The commonly used
effective distribution coefficient keff, defined as ko*CO/CL, is a
measure of concentration level of a particular specie in the crystal. Here,
ko is the equilibrium distribution coefficient which is a ratio of specie
concentration in the crystal at the interface to the concentration of specie
in the melt at the interface, and ko is usually taken from the phase
diagram. For a particular specie, if the concentration of the specie in the
melt near the interface is known, keff can be determined. From our
numerical calculations, the keff (based on CO and CL) for phosphorus
varies from 0.427 to 0.408, while a numerical correlation using one
dimensional approximation by BPS [34] gave a value of 0.445. The one
dimensional analysis [34) assumed a quadratic variations for the axial
velocity and ignored the radial variation of the species concentrations.

CASE 2

The geometric configuration in this calculation is the same as in the first
case, except that the shape of the interface is also determined as part of the
solution from the heat flux condition at the melt-crystal interface. The
crystal pulling velocity can be determined from the area average net heat
transfer across the interface, since this is a necessary condition for a
steady state solution to exist. In other words, for the physical parameters
used, the crystal is growing at a constant diameter. The interfacial position
is considered as steady state if the local pulling velocity along the
interface is within 3% of the average pulling velocity obtained from average
net heat available for solidification.

1,1. Figure 5.1.6 shows the coordinates at the end of the steady state

calculation. The initial coordinate mesh is orthogonal, which is the same as

that shown in Figure 5.1.1, but due to deformation of the interface the
coordinates become nonorthogonal. Figure 5.1.7 shows the secondary flow and

p*. temperature contours where it is seen that the vortex structure and
temperature distributions are similar to those for Case 1. The shape of the
interface becomes convex for the parameters used, and the maximum int rface
deformation is about 0.9cm. The pulling velocity obtained from the

calculations is about 0.2mm/min. Local heat fluxes in the melt and crystal
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phases along Lhe melt-crystal interface are plotted in Figure 5.1.8. The
difference between the heat fluxes indicates the amount of heat gain from
crystallizaticn.

In this example, we have shown that nonuniform solidification at the interface
leads to nonplanar interface and nonuniform temperature near the melt-crystal

interface.

CASE 3

The purpose of this calculation is to show that a 'near' planar interface can
be achieved by adjusting various parameters. In this particular calculation,
the crucible temperature has been reduced such that the strength of natural
convection is reduced to provide a more uniform temperature distribution near
the melt-crystal interface. On the other hand, rotational rate of the crystal
is increased to provide a stronger forced convection with a similar result.

In this calculation, the temperature of the crucible is assumed to be 1432 C.
Emissivities for the free surface and crystal surface are taken to be 0.2 and
0.08, respectively. As seen from Figure 5.1.9, the influence of natural
convection is substantially decreased. Temperature contours for both phases
are also shown. The maximum deviation of interfacial height is less than
1.2%, while the maximum deviation of the free surface height (without
considering surface tension) is less than 0.2%. Heat fluxes of both phases
along the interface are shown in Figure 5.1.10, where again the difference
between the two curves indicates the amount of heat gained from
crystallization. Figure 5.1.11 shows the normalized net heat fluxes along the
interface with and without the assumption of planar interface, where it is
seen that the heat flux is much more uniform in the case with the calculated
nonplanar interface.

The specie concentration distribution of an arbitrary impurity is shown in
Figure 5.1.12. The boundary conditions used are the same as in Case 1. The
more uniform distribution near the interface which is found in this case
confirms that the effect of natural convection in transporting species from
the melt toward the interface is reduced with the parameters chosen for this
simulation.

Again, a thin layer submodel calculation near the melt-crystal interface is
performed to resolve the species boundary layer (see Figure 5.1.13). Using
the rotational rate of the crystal, and the calculated crystal pulling
velocity (0.04mm/min), the suction parameter is determined to be 0.0035. From
the present numerical calculations, the keff for phosphorous only varies
from 0.369 to 0.368, due to the nearly uniform concentration distribution
while the one dimensional approximation by BPS [34] is 0.368.

CASE 4

-p

The purpose of this calculation is to demonstrate the numerical capability of
the existing code to handle a case with a meniscus. In this calculation a
Bond number of 58 and contact angle of 15 are used. The Bond number an d the
contact angle are determined from the physical properties of silicon. The
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free surface shape is determined by the surface tensional force and inertial
force due to rotations. Other parameters are the same as in Case 3 except the
following: the average temperature of the argon gas is assumed to be 1379 C.

Due to the sharp change in slope of the free surface near the crystal, a new
method of constructing the grid is used, with the coordinates shown in figure

5.1.14. The boundary-fitted coordinates are generated using elliptic partial

differential equations based on the work of Thompson, et al., [39,40]. The
origins of the elliptic generation technique are based on an analogy between

the requirements of two dimensional coordinate systems, and the properties of
streamline and potential function distributions. This grid generation
technique have been modified and applied successfully [43] in complicated
geometries. The temperature contours of both phases and secondary flow are
shown in Figure 5.1.15. The maximum deviation of the interfacial height, in
this case is within 4% (i.e., -lmm) while the maximum deviation of the free
surface is about 7mm. The calculated meniscus shape when the rotational
effects are not considered have been compared with the analytical solution of
Young-Laplace's equation [20]. The comparison is in good agreement. The flow
pattern obtained in this case is quite similar from those in previous cases.
The vortice which under the free surface in the previous case is now 'pushed'
into the interior of the melt under the crystal by the meniscus.

The general flow pattern, however, does not change: an Ekman layer under the
crystal; radially outward flow caused by the rotating crystal is forced to
turn-around by the radially inward flow caused by natural convection; axial
flow beneath the crystal center is upward or downward depends on whether it is
above or below the Ekman layer.

CASE 5

The calculation shown in (Cases 1 through 4) are done in a crucible of
relatively small diameter. Note that the short height of the crucible means
that the simulations are done for the near-end stage of a nonreplenishable
process. In this case, a larger size crucible is used. The diameter of the
crucible is 26.5cm with a melt height of 17.7cm and the length of the crystal
is assumed to be 13.3cm. The rotational rate of the crystal is the same as
before, but the rotational rate of the crucible is reduced so that the
crucible Reynold's number is the same as for the previous cases. In physical
terms, the crucible is rotating at 0.13rpm, and the temperature of the
crucible is assumed to be 1432 C.

Figure 5.1.16 shows the coordinates for this calculation where there are 66
radial and 60 axial mesh points in the melt phase, and 42 radial and 22 axial
points in the crystal phase. Figure 5.1.17 shows the secondary flow and
temperature distributions, while a detailed velocity vector plot near the
melt-crystal interface is shown in Figure 5.1.18. In this calculation,
several more vortexes are found in the melt fluid. The most distinguished one
is the one centered at 6.8cm from the crucible bottom. It carries the
hot-melt fluid to a region near the crystal interface. Several recirculating
vortexes are also observed. As shown in Figure 5.1.18, an Ekman layer of
approximately 0.11cm is also found. We observed the similar results as in the
previous cases since the nondimensional number in the governing equations are
the same. However, there is no geometric similarities with the last cases
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(e.g., aspect ratio of the crucible are not the same as before). In this
calculation, the ambient temperature of the argon gas is adjusted so that a
melt-crystal interface of a maximum derivation of about 1% is obtained.

CASE 6

The calculation shown in this case is to simulate the crystal growth process
to yield a large diameter crystal. A crystal of diameter 19.05cm is grown
crucible of diameter 28 .58cm. The height of the melt is 9.53cm. The crystal
is rotating at 2rpm while the crucible is counter-rotating at 0.5rpm. In
nondimensional terms, the Reynolds number, Res, based on the crystal radius
and rotation is 7000 and the Reynold's number Rec, based on the crucible
radius and rotation is 4000.

Figure 5.1.19 shows the coordinates for this calculation where there are 68
radial and 48 axial mes. points in the melt phase, and 35 radial and 25 axial
points in the crystal phase. Figure 5.1.20 shows the secondary flow and
temperature contours of the melt and crystal phases. In this calculation, the
forced convection induced by both the crystal and crucible rotations is larger
than the previous cases and this results in a much more complicated flow
pattern and temperature distribution in the melt. The radial velocities near
the crucible are much larger than in the previous cases. These large radial
velocities push the counter-rotating vortex upward and closer to the crucible
side wall. The center of the vortex is at about one crystal radius in
contrast to about 0.9 radius in previous cases. The strong radial flow makes
a strong return flow at the free surface near the crucible side wall. This
strong return flow brings the hot melt from the bottom and side crucible wall
to the free surface.
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6. THREE DIMENSIONAL CALCULATIONS

6-1. Group V - ADolications to Continuous Feed Silicon Growth

A simulation of Czochralski silicon growth with a Continuous Liquid Feed (CLF)
option has used to demonstrate the three dimensional capability of the
computer code developed. A continuous CLF crystal growth was designed to
permit crystal growth from a small melt volume. It has been reported that
large melt volume changes during growth of the crystal was a strong influence
to the crystal quality. The advantage of small melt volume used in CLF is
then obvious. Another advantage of the CLF method is the high crystal yield
per crucible i.e., longer crystal can be grown from each crucible.

A description of the set-up of the CLF is following. Two identical
Czochralski crystal growth chamber are used. One crucible (the melter) serves
as a supplier of melt fluid to the other (the grower). These two chambers are
isolated from each other to eliminate problems associated with SiO build-up in
the growth chamber. All growth conditions in these two chambers are identical
except that the vertical motion of the two solid rods are in opposite
directions. The melt fluid in the two crucibles is connected by an inverted
U-tube at the free surface and melt fluid is transferred from the melter to
the grower by hydrostatic pressure differentials through the inverted U-tube.

Since we are interested in the physics inside the grower chamber, numerical
calculations are done for the growth chamber only and the three dimensional
aspect of the problem is obtained by assuming a specific temperature
distributions within a small region. The justification for this temperature
assumption is as follows. The contact surface between the connecting tube and
free surface is modeled as an area with a temperature different from that of
the free surface. The flow rate in the inverted U-tube is assumed to be small
compared to the melt-fluid velocity (secondary velocity) near the free
surface. The temperature of the contact surface is specified as following.
In CLF growth, the environment in the grower chamber is the same as the
environment in the melter chamber, except that the directions of the growth
are reversed in the two chambers. The temperature profile at the inlet of the
inverted U-tube (in the melter side) should approximately be equal to the
temperature profile at an area on the free surface of a grower crucible. Due
to the passing of melt the fluid inside the tube, the outlet temperature of
the tube can approximate as the average of the inlet temperature profile.

In our numerical simulation, an rectangular area of 0.87 x 0.84cm2 is
assumed to be the contact surface of the connecting tube. This contact
surface is located about 1cm from the crucible wall at the free surface. The
initial conditions correspondence to a two dimensional Czochralski growth with
boundary conditions as stated in Case 3, Section 4.5. Once the three
dimensional steady state solution is obtained, we change the temperature of
the contact area to the average of the temperature in the area. Calculations
with a rectangular spot of constant temperature at the free surface is then
performed. Figure 6.1.1 shows the coordinates in the r-9 plane for the melt
and solid phases. Notice that the grids are packed where the connecting tube
is in contact with the melt phase at the free surface. Coordinates in the r-z
plane are the same as in the two dimensional cases. Figure 6.1.2 shows the
velocity plots in the r-P planes at various heights. The free surface is
located at about [ - 0.84. The small temperature perturbation due to the
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connecting tube does not seem to have a large effect on the azimuthal
velocities. Figures 6.1.3 and 6.1.4 shows the temperature contours of the
melt and crystal phases respectively. The cooler temperature melt is well
mixed at 0.6cm below the free surface. Further, the small temperature
disturbance does not have influence as the temperature contours of the crystal
Figure 6.1.5 and 6.1.6 show the secondary flow and temperature contours of the
melt phase under the contacting area. In order to look at how the temperature
disturbance distribute in space, we plot the non-dimensional temperature
difference in the radial direction for various height. The plot is shown in
figure 6.1.7. As shown in Figure 6.1.8, the temperature disturbance behaves
like an exponential decay function in height.
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7. CONCLUSIONS AND RECOMMENDATIONS

A numerical algorithm to follow free and melt-crystal interfaces in
conjunction with the LBI scheme has been developed and tested for Czochralski
crystal growth problems. The physical domain is transformed using a time
dependent boundary fitted coordinate system and the nonlinear interfacial
boundary conditions are applied along these boundaries which can be evolving
in time. The solid and liquid phases are coupled through the heat flux
conditions along the melt-solid interface. The velocity, temperature, and
species distribution of the melt phase, temperature distribution of the
crystal phase, along with the positions of the melt-crystal interface and free
surface, are obtained by the consistency split LBI scheme. The crystal
pulling velocity is also determined from the necessary condition of the
interface tracking algorithm. A thin layer submodel which can provide species
concentration levels near the melt-crystal interface is also included. The
procedure has been utilized for sample calculations which demonstrate the
feasibility of the approach and its potential value for assessing the
Czochralski crystal growth process.

With the numerical capability developed in the present work, the thermal
variation and dopant concentration homogeneity along the melt-crystal
interface can be predicted based on the external growth parameters.
Moreover,a crystal pulling velocity can be provided for uniform growth.

Since our numerical scheme is written in primitive variable forms, extension
to study three dimensional effects is not limited and was demonstrated in a
simulation of Continuous Liquid Feed (CLF) Czochralski silicon growth.

In the present studies, we found that with the physical properties of the
molten silicon and crucible sizes used in the industry, the shape of the free
surface caused by rotation of the crucible and crystal cannot be approximated
as planar. Surface tensional force at the melt-crystal-gas junction and near
the free surface is important. The former causes the existence of a mensicus
and latter causes Marangoni flow. The shape of the melt-crystal interface is
important to know because it indicates the uniformity of the heat flux
(directly the uniformity of the thermal stress) in the grown crystal. To
achieve a near planar melt-crystal interface, the rotational rate of the
crystal and/or the heat transfer conditions of the argon gas need to be

determined.
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APPENDIX A

Split LBI Algorithm

Linearization and Time Differencing

The system of governing equations can be written as a single grid

point in the following form:

H(o)/3r = D(O) + S(O) (A-1)

where + is the column-vector of dependent variables, H and S are

column-vector algebraic functions of *, and D is a column vector whose

elements are the spatial differential operators which generate all spatial

derivatives appearing in the governing equation associated with that

element.

The solution procedure is based on the following two-level implicit

time-difference approximations of (A-l):

(H n+l - Hn)/At . B(Dn+l + Sn+ l ) + (I-B) (Dn + Sn) (A-2)

where, for example, Hn+l denotes H(On+l) and At - tn+ l -tn. The

parameter 0 (0.5 < 8 < I) permits a variable time-centering of the scheme,

with a truncation error of order [A 2 , (0 - 1/2) At].

A local time linearization (Taylor expansion about 4P) of requisite

formal accuracy is introduced, and this serves to define a linear

differential operator L such that

Dn+l = Dn + Ln (,n+1 0 n) + 0 (At2) (A-3)

Similarly,

H n+I = I I n /a*+ (0" - 0 n) + o (e't2 ) (A-4)

Sn+I . Sn + (3S/a,)n (n+l - *fn) + 0 (At2) A-5)
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Equations (A-3, 4,5) are inserted into Eq. (A-2) to obtain the following

system which is linear in *n+l

(A - BAt Ln) (,n+1 _ *n) - At (Dn + Sn) (A-6)

and which is termed a linearized block implicit (LBI) scheme. Here, A

denotes a square matrix defined by

A = (aH/ ,)n - eat (asia) n  (A-7)

Consistent Splitting of the LBI Scheme

To obtain an efficient algorithm, the linearized system (A-6) is

split using ADI techniques. To obtain the split scheme, the

multidimensional operator L is rewritten as the sum of three

one-dimensional" sub-operators Li (i = 1, 2, 3) each of which contains

all terms having derivatives with respect to the i-th spatial coordinate.

The split form of Eq. (A-6) can be derived either by following the

procedure described by Douglas and Gunn in their generalization and

unification of scalar ADI schemes, or using approximate factorization. In

either case, for the present system of equations the split algorithm is

given by

(A - BAtLl) (f* - *n} = At D+ S) (A-8a)

(A- BAtL) n)** n) n A )* - *n (A-8b)

(A- SAtLn) (,n+- n A (n} =^ n) (A-8c)

where ** and *** are consistent Intermediate solutions 1 2 . If spatial

derivatives appearing in Li and D are replaced by three-point difference

formulas, then each step in Eqs. (A=8a), b, c) can be solved by a

block-tridiagonal elimination.
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APPENDIX B

Heat transfer model at crystal surface

If the heat convection boundary, as outlined in section 2-6, is used, the
Nusselt number must be known. The boundary condition is applied along the
exposed crystal surface. The most suitable heat transfer model can be found in
Bird [44] - Heat transfer coefficients for forced convection around submerged
objects. A correlation is available under the following assumptions.

a) uniform surface temperature
b) gas properties are evaluated at film temperature
c) gas approaching velocity is constant
d) gas flow is cross stream

log (Nu Re-' Pr-1 /3 ) = m log Re +b

where m = -0.4725

b - -0.3147

and the Nusselt and Reynols numbers are nondimensionalized by the diameter of
the cylinder.
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Group Description

A Studies on hydrodynamics of the melt phase with

planar melt-crystal interface and free surface

B Studies on temperature distribution of the melt

and/or crystal phase

C Combined problem of melt and crystal phase

TABLE 1.1.1 - Groups of Numerical Modeling in Czochralskl Growth
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Melt Phase Crystal Phase

Auhr ehdConvection Heat Free Melt Method Heat
Auhr ehd Forced Free Radiation Surface Interface Radiation

Kobayashi FDM Re<500;
and Arizumi 2DPr=0.3 Gr=60 E =0.2 Planar N/A N/A N/A

1970 2D Rotating Crystal _________ ___ ____

Langlois FDM Re=2;
and Shir 2DPr=2 Gr=<3 N/A Planar N/A N/A N/A

1977 2D Counter Rotation ____

* Langlois FDM Re=40;5
197 20Pr=0.08 Gr=9x105  N/A Planar N/A N/A N/A

197 2D Counter Rotation _________ ___

Kobayashi FDM Re=40; 3 5
Pr=0.01, 0.1 10 <Gr<10 Insulated Planar N/A N/A N/A

1978 2-D Rotating Crystal___ ___ ________

Langlois FDM Re=1700;7Pr=0.03 Gr<4.7x10 E=0.33 Planar N/A N/A N/A
1979 2-D Rotating Crystal_____

Kobayashi FDM Re=40;
190 2DPr=1 Gr=500 Insulated Planar N/A N/A N/A

1980 2-D ~Counter Rotation________________

Kobayahi FDM 40cRe<200;5"N Kbysi FMPr=1 Gr<10 Insulated Planar N/A N/A N/A
1981 2-D Counter Rotation__________

Crochet, et al. FEM Red 000; 6 Isltd Paa / / /
1983 2-D Counter Rotation

Arizumni and FDMN/N/ =02 Paa Inldd FM C0.
Kobayashi 2-D NANAe=. lnr Icue D -=.

1972 _______

William and Sei e
Reusser N/A N/A N/A N/A N/A Planar FEM Sepeifie

1983 ________ ____ e prtr
Derby and FEM for c =0.8* c=0.8*

Brown LEO N/A N/A Y 00 Meniscus Included FEM 7=0.05
1985 2-0D_______

Ramachandrar N/A N/A N/A N/A N/A Included FEM c =0.64
1985

Chang and FEM for Pr=1 5 6
Brown Bridgeman No Rotation 2010 <Gr<10 N/A N/A Included FEM N/A
1984 2-0D_______

Liu, et al. FDM Re=4000;2
Pr=0.08 Gr=0, 2x0 2  N/A Planar N/A N/A N/A

d 1982 2-D Counter Rotation________

Present FOM 100<Re<4000 6 Included
Pr=1, 0.054 0<Gr<6x10 E =0.2 & Included FDM E =0.2

Work 2-0 & 3-0 Counter Rotation Meniscus_____

TABLE 1.1.2 -Numerical Studies of Cz Crystal Growth by Various Authors
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RUN

PARAMETERS TI-I TI-2 TI-3

CJ0 -0.68 -0.68

800.75 0.75 0.25

TABLE 4.2.1 -Parameters Used in Group I Studies

-51-



0 0)

r.. 00 (n W)
_ w

00

0D 00

0 0 0

1n 00
c 0 0 0 0 0

0 0 90 0 -
C- z z0U

wU

NQ 0 KZU
D- 6

CL)

c'J '52

Lmn



(00

aAa

co 4 '
I-w

x-

I '53



ca C/)

4- CV

CO,

w (I)
CO

0
C00

+ cd

00

co4

UC) 0

ad Cu- ad

o 054



CASES 1 through 5

Res = 1000.

Rec 850.

Pr =0.054

Fr -0.001

Gr Th

-= 
5.0

Re2 AT

Pe = 27.

TABLE 5.1.1. Nondimensional Parameters Used in Group IV studies
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FIG. 1.1.1 -Basic Principle of Czochralaki Crystal Growth Method
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FIG. 3.1.1 -Computational Domain of a CZ Growth
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FIG. 3.1.2 - Flow Chart of the Numerical Method
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FIG. 4.1.1 - Free Surface Calculations in a Rotating Fluid
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FIG. 5.1.19.b -Group IV: Case 6 -Coordinates for the Crystal Phase
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